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Abstract—A queueing system with Markov arrival process, several customer types, generalized
foreground-background processor sharing discipline with minimal served length, and an infinite
buffer for all types of customers is studied. The joint stationary distribution of the number of
customers of all types and the stationary distribution of time of sojourn of customers of every
type are determined in terms of generating functions and Laplace–Stieltjes transforms.

1. FORMULATION OF THE PROBLEM

One possible variant of the processor sharing discipline is the foreground-background processor
sharing (FBPS) discipline with minimal served length. Queueing systems with Markov arrival
process, several customer types, and generalized foreground-background processor sharing discipline
with either separate finite buffers for customers of different types or a common finite buffer for
customers of all types are investigated in [1]. Mathematical relations for computing the joint
stationary distributions of the number of customers of all types in these systems are derived. It
also gives a long list of papers devoted to systems under processor sharing discipline.

In this paper, we study a similar system, but with an infinite buffer for customers of all types.
As will be clear from what follows, for systems with infinite buffers we can find the joint stationary
distribution of the number of customers of all types in terms of generating functions, but also the
stationary distribution of the time of sojourn of customers of every type in the system in terms of
Laplace–Stieltjes transform.

We shall study a single-server system with a flow of customers of K types.
The input is a Markov process with a finite state set {1, . . . , I} and defined by matrices Λk,

k = 1,K, corresponding to the change in the generation phase with the arrival of a customer of the
kth type, and matrix M corresponding to the change in the generation phase without any arrival
(see [1]).

The total number of customers of any type is unbounded (system with an infinite buffer for
customers of all types).

The service time (called the length in the sequel) of a customer of the kth type has a distribution

function Bk(x) with mean bk =
∞∫
0

(1 − Bk(x)) dx < ∞. For the sake of simplicity of presentation,

we assume that the distribution densities bk(x) = B′k(x) exist for deriving differential equations.
We also assume that the necessary and sufficient condition ρ < 1 for the existence of a stationary

operation mode for the system holds. Here ρ =
K∑
k=1

λkbk is the traffic intensity, λk = πaΛk1 is
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the intensity of the input flow of customers of the kth type, and πa is the vector of stationary
probabilities of the Markov customer generation process.

The generalized foreground-background processor sharing (FBPS) discipline with minimal served
length for our system is described as follows. A kth-type customer with served length x has a
priority index rk(x), and the condition rk(0) = 0 holds for every k. Moreover, rk(x) is a strictly
increasing continuous function. The inverse r(−1)

k (y) of the function rk(x) is assumed to have a
bounded derivative γk(y) = dr

(−1)
k (y)/dy. Then a customer with minimal priority index is served

at any instant. If l customers have the same minimal priority index y, they are served concurrently.

If the ith of these customers is of the kith type, his service rate is γki(y)
/ l∑
j=1

γkj(y).

In Kendall’s classification, our system is denoted by MAPK/GK/1/∞/FBPS.
In what follows, we use the following notation (see also [1]).
The intensity of completion of service of a customer of the kth type, which depends on his

priority index y, is denoted by βk(y) = γk(y)bk(r(−1)
k (y))/(1 −Bk(r(−1)

k (y))).
Vectors whose coordinates are numbered by indexes i, i = 1, I , are denoted by boldface letters,

and vectors whose coordinates are numbered by indexes k, k = 1,K, are denoted by an over-arrow;
for example, p = (p1, . . . , pI) and ~n = (n1, . . . , nK). Moreover, we shall not make any distinction
between column vectors and row vectors in expressions since this is always clear from the context.
Indeed, if a matrix is left multiplied by a vector, the result is a column vector; for the converse
case, we obtain a row vector.

We say that ~n ≤ ~m if all coordinates the vector ~n are not greater than the corresponding
coordinates of the vector ~m, and ~n < ~m if all coordinates of the vector ~n are not greater than the
corresponding coordinates of the vector ~m and nk < mk for at least one k.

The scalar product of two vectors ~n and ~m is denoted by (~n, ~m) =
K∑
k=1

nkmk. A vector all

whose coordinates, except for the kth coordinate, are zero and the kth coordinate is 1 is denoted
by ~ek. The vector ~m+ ~ek is denoted by ~m+

k , a vector of dimension I all whose coordinates are 1 is
denoted by 1, and a vector all whose coordinates are 0 is denoted by 0. We also use the notation

|~m| =
K∑
i=1

mi and ~z ~m =
K∏
k=1

zmkk .

2. STATIONARY DISTRIBUTION OF THE NUMBER OF CUSTOMERS

Let us consider a busy period. Let Ak(~m | y), ~m ≥ ~0, denote the matrix, whose element
akij(~m | y) is the probability that at the instant of a busy period when the priority index takes the
maximal value y or at the instant of completion of the busy period if the priority index does not take
this value y in this busy period, then the system contains ~m customers and the generation phase
is j, provided the busy period began with generation phase i and service of a kth-type customer.

The functions Ak(~m | y) satisfy the infinite system of first-order ordinary differential equations

d

dy
Ak(~m | y) = (~m,~γ(y))Ak(~m | y)M

+
K∑
l=1

 ∑
~0≤~ı≤~m

(~ı,~γ(y))Ak(~ı | y)ΛlAl(~m−~ı | y)+(ml+1)βl(y)Ak(~m+
l | y)−mlβl(y)Ak(~m | y)

 (1)

under the initial condition

Ak(~m | 0) =

{
E, ~m = ~ek
0, ~m 6= ~ek.
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Using the generating function Ãk(~z | y) =
∑
~m≥~0

~z ~mAk(~m | y), we can reduce system (1) to the

finite system of first-order quasilinear partial differential equations

∂

∂y
Ãk(~z | y) =

K∑
l=1

∂

∂zl
Ãk(~z | y)

(
zlγl(y)

[
M +

K∑
n=1

ΛnÃn(~z | y)
]

+ βl(y)[1− zl]
)

(2)

under the boundary conditions

Ãk(~z | 0) = zkE. (3)

Let us consider the busy period that began with generation phase i and service of a kth-type
customer. Let Qk(~m | y), ~m > ~0, denote the matrix whose element qkij(~m | y) is the mean time
of residence of the system in a state in which the system contains ~m customers and the generation
phase is j until the instant when the priority index attains the maximal value y or until the
completion of the busy period if the priority index does not take this value y in this busy period.

The functions Qk(~m | y) satisfy the infinite system of first-order ordinary differential equations

d

dy
Qk(~m | y) = (~m,~γ(y))Ak(~m | y) +

K∑
l=1

∑
~0<~ı<~m

(~ı,~γ(y))Ak(~ı | y)ΛlQl(~m−~ı | y)

under the initial condition Qk(~m | 0) = 0, or the finite systems of first-order ordinary differential
equations

d

dy
Q̃k(~z | y) =

K∑
l=1

zlγl(y)
∂

∂zl
Ãk(~z | y)

(
E +

K∑
n=1

ΛnQ̃n(~z | y)

)

in terms of the generating function Q̃k(~z | y) =
∑
~m>~0

~z ~mQk(~m | y) under the initial condition

Q̃k(~z | 0) = 0.
Now, let
Ak = Ak(~0 | ∞) be the matrix whose elements are the probabilities akij that the generation

phase at the end of a busy period is j, provided at the beginning of the busy period it was i and
a kth-type customer was taken for service,

Qk(~m) = Qk(~m | ∞) be the matrix whose elements are the mean times qkij(~m) of sojourn of
the system in a busy period in state (j, ~m), provided the generation phase at the beginning of the
busy period was i and a kth-type customer was taken up for service,

Q̃k(~z ) =
∑
~m>~0

~z ~mQk(~m) = Q̃k(~z | ∞) be the generating function of the matrix Qk(~m) and,

Qk =
∑
~m>~0

Qk(~m) = Q̃k(1) be the matrix whose elements are the mean times qkij of sojourn of

the generation process in phase j in a busy period, provided it was in phase i at the beginning of
the busy period and a kth-type customer was taken up for service.

Now we can find the stationary distribution of the number of customers in the system. For this
purpose, let us consider the imbedded Markov chain generated by the numbers of the states of the
control process at the instants of completion of busy periods.

The probability that the busy period following an idle period begins with the service of a kth-
type customer and state j of the control process, provided it was in state i at the beginning of the
idle period is given by the formula in matrix form

∞∫
0

eMtΛk dt = −M−1Λk.
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Therefore, the transition probability matrix P of the imbedded Markov chain is of the form

P = −M−1
K∑
k=1

ΛkAk.

The vector π of stationary probabilities πi, i = 1, I , of the imbedded Markov chain is determined
from the system of equilibrium equations

π = πP

under the normalization condition

π1 = 1.

The matrix Q0 whose elements are the mean sojourn times q0ij of the control process in state j
in an idle period, provided at the beginning of the idle period it was in state i and a kth-type
customer was taken up for service is defined by the expression

Q0 =
∞∫
0

eMtdt = −M−1.

The mean time T between the instants of change in the state of the imbedded Markov chain for
a system in stationary operation mode is defined by the expression

T = πQ01− πM−1
K∑
k=1

ΛkQk1 = −πM−1

(
1 +

K∑
k=1

ΛkQk1

)
.

Now we can find the vectors p(~m), ~m ≥ ~0, of time-stationary probabilities pi(~m), i = 1, I , that
the system contains ~m customers of different types and control process is in state i:

p(~0) =
1
T
πQ0 = − 1

T
πM−1,

p(~m) = − 1
T
πM−1

K∑
k=1

ΛkQk(~m), ~m > ~0.

Using the generating function p̃(~z ) =
∑
~m≥~0

~z ~mp(~m), we obtain the formula

p̃(~z ) = − 1
T
πM−1

(
E +

K∑
k=1

ΛkQk(~z )

)
.

The vector p∗k(~m), ~m ≥ ~0, of stationary probabilities p∗ki(~m), i = 1, I , k = 1,K, that a kth-type
customer upon arrival finds ~m other customers of different types in the system and the control
process is in state i is given by the formula

p∗k(~m) =
1
λk
p(~m)Λk, ~m ≥ ~0,

or in terms of the generating function p̃∗k(~z ) =
∑
~m≥~0

~z ~mp∗k(~m), by the formula

p̃∗k(~z ) =
1
λk
p̃(~z )Λk.

In numerical computations, it is not easy to find the solution of system (2) under the boundary
conditions (3). Therefore, we now state the functional relationships for Ãk(~z | y) derived from
special probabilistic considerations.
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Let us consider, along with the initial system, an y-system, which is defined as follows. The
input flow, customer length, and service discipline for the y-system are the same as for the initial
system. The difference is that the service of a kth-type customer with maximal priority index
greater than y (i.e., length greater than r(−1)

k (y)) is terminated in the y-system at the instant when
the priority index attains the value y and he quits the y-system.

It is easily seen that the busy periods of the initial and y-systems coincide up to the instant τ
when the maximal value of the served priority indexes of the customers in these systems attains
the value y (at this instant both systems contain only customers of priority index y). Thereafter
the busy period of the initial system continues, whereas it ends in the y-system. All customers of
initial priority index greater than y that had arrived prior to the instant τ are assumed to have
been served and, therefore, quit the system.

Therefore, the numbers of customers of different types in the initial system at the instant in
a busy period when the maximal value of the priority index attains the value y, coincide with
the numbers of customers of maximal priority index greater than y served in a busy period of
the y-system, and the generating function Ãk(~z | y) coincides with the generating function of the
number of customers of priority index greater than y served in the busy period of the y-system.

Note that for conservative service disciplines (such is the generalized FBPS discipline), the length
of a busy period and numbers of served customers of different priority indexes and types in a busy
period are invariant characteristics of the service discipline. Therefore, the generating function of
the number of customers of length greater than y served in a busy period of the y-system can be
computed using any conservative discipline. In our opinion, the LCFS discipline (see [2]) is best
suited for this purpose.

Thus, let us consider a MAPK/GK/1/∞ queueing system whose input is the same Markov flow
of customers of K types as that of the initial system. This system is also referred to as the y-system.
But, unlike the initial system, in the y-system

customers are served according to the LCFS discipline (with no regard for the type, length,
priority index, etc.) and

customers of the kth type are subdivided into two classes: customers of priority index less than y
(i.e., of length less than r

(−1)
k (y)) and customers of priority index greater than y (i.e., of length

greater than r(−1)
k (y) in the initial system). The length of a class I customer is the same as before,

whereas the length of a class II customer in the y-system is r(−1)
k (y).

Now the generating function Ãk(~z | y) coincides with the generating function of the number of
class II customers of different types served in a busy period of the y-system.

Let Ã∗x(~z | y) denote the generating function of the number of class II customers of different
types served in a busy period of the y-system opened by a class I customer of length x (the customer
that opens a busy period may have any nonnegative length). The matrix expression takes account
of the generation phase at the beginning and end of a busy period. Reasoning as in [2], we obtain

Ã∗x(~z | y) = e

(
M+

K∑
k=1

ΛkÃk(~z|y)

)
x

(4)

and

Ãk(~z | y) =

r
(−1)
k

(y)∫
0

Ã∗x(~z | y)bk(x) dx+ zÃ∗
r
(−1)
k

(y)
(~z | y)

[
1−Bk

(
r

(−1)
k (y)

)]
. (5)

The system of functional Eqs. (4) and (5) can be solved numerically by the methods of [2].
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3. STATIONARY DISTRIBUTION OF THE SOJOURN TIME OF A CUSTOMER

Let us examine the y-system introduced at the end of the previous section. Let W ∗x (u|y) denote
the matrix whose element w∗xij(u|y) is the probability that the busy period of the y-system is less
than u and the generation phase at the end of this busy period is j, provided the total length
of customers at the beginning of the busy period was x and generation phase was i. Then the
Laplace–Stieltjes transform W̃ ∗x (s|y) of the matrix W ∗x (u|y) is given by the formula

W̃ ∗x (s|y) = e

[
M+

K∑
k=1

ΛkW̃k(s|y)−sE
]
x

, (6)

where the matrix W̃k(s|y) is determined from Eq. (6) and equations

W̃k(s|y) =

r
(−1)
k

(y)∫
0

W̃ ∗x (s|y) bk(x) dx+ W̃ ∗
r
(−1)
k

(y)
(s|y)

[
1−Bk

(
r

(−1)
k (y)

)]
.

Letw(x|y) denote the vector of probabilities wi(x|y) that the virtual waiting time in the y-system
in stationary mode is less than x and the generation phase is i. Note that the vector w(x|y), being
a function of x, has at the point 0 a discontinuity w(0+|y) equal to the vector of stationary
probabilities wi(0+|y) that there are no customers in the y-system and the generation phase is i.

Let w̃(s|y) denote the Laplace–Stieltjes transform of the vector w(x|y) and let

βk(s|y) =

r
(−1)
k

(y)∫
0

e−sxbk(x) dx+ e−sr
(−1)
k

(y)
[
1−Bk

(
r

(−1)
k (y)

)]
denote the Laplace–transform of the length of a kth-type customer in the y-system. Then w̃(s|y)
is given by the formula (see [2])

w̃(s|y) = sw(0+|y)
[
sE +M +

K∑
k=1

Λkβk(s|y)
]−1

,

where w(0+|y) can be found from the equation

w(0+|y)

[
M +

K∑
k=1

ΛkW̃k(0|y)

]
= 0

under the normalization condition

w(0+|y) 1 = 1− ρy,

where

ρy =
K∑
k=1

λk


r
(−1)
k

(y)∫
0

xbk(x) dx+ r
(−1)
k (y)

[
1−Bk

(
r

(−1)
k (y)

)]
is the traffic intensity of the y-system.

Let us turn back to the initial system.
Let vk(u|x) denote the vector of stationary probabilities vki(u|x) that the sojourn time of a

kth-type customer of length x is less than u and the generation phase at the instant of completion
of his service is i.

To find vk(u|x), let us take a kth-type customer of length x, i.e., of maximal priority index
y = rk(x). Note that customers of priority index greater than y in the system have no influence on
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the service of the customer we have chosen. Furthermore, customers of maximal priority index less
than y in the system at the instant of arrival of the chosen customer and the customers that arrive
in the course of service of the chosen customer necessarily quit the system earlier than the chosen
customer. Finally, customers of maximal priority index greater than y whose priority index at the
instant of arrival of the chosen customer was less than y or customers that arrive in the course of
service of the chosen customer will have a priority index equal to y at the instant when the chosen
customer quits the system. Therefore, the time of sojourn of the chosen customer in the system
is equal to the time between the instant of his arrival and the instant when the system is free of
customers of priority index less than y; in other words, is equal to the time between the instant of
arrival of the chosen customer at the y-system and the instant of completion of the busy period of
the y-system. Hence, since the stationary distribution of the virtual waiting time in the y-system
is defined by the vector w(v|y), we obtain

vk(u|x) =
1
λk

∞∫
0

w(dv|y)ΛkW ∗x+v(u|y),

or, by virtue of (6),

ṽk(s|x) =
1
λ

∞∫
0

w(dv|y)ΛkW̃ ∗x+v(s|y) =
1
λ

∞∫
0

w(dv|y)Λke

[
M+

K∑
k=1

ΛkW̃k(s|y)−sE
]
(x+v)

(7)

in terms of the generating function.
The vector vk(u) of stationary probabilities vki(u) that the time of sojourn of a kth-type cus-

tomer is less than u and generation exists in phase i at the instant of completion of his service is
given by the formula

vk(u) =
∞∫
0

vk(u|x) dBk(x). (8)

Finally, the stationary distribution Vk(u|x) of the sojourn time of a kth-type customer of length x
and the stationary distribution Vk(u) of a kth-type customer are

Vk(u|x) = vk(u|x) 1 (9)

and

Vk(u) = vk(u) 1. (10)

Formulas (7)–(10) define the stationary characteristics related to the time of sojourn of a cus-
tomer in the system.
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